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Abstract

We consider a nonlinear �nite volume (FV) scheme for station ary diffusion equa-
tion. We prove that the scheme is monotone, i.e. it preserves positivity of analytical
solutions on arbitrary triangular meshes for strongly anis otropic and heterogeneous
full tensor coef�cients. The scheme is extended to regular st ar-shaped polygonal
meshes and isotropic heterogeneous coef�cients.

1 Introduction

Predictive numerical simulations require not only more sophistic ated physical models
but also more accurate and reliable discretization methods for thes e models. In this ar-
ticle we consider a stationary diffusion problem with a full tensor c oef�cient. Develop-
ment of a new discretization scheme for this problem should be bas ed on a few practical
requirements [2, 3]. The scheme must

- be locally conservative;
- be monotone, i.e. preserve positivity of the differential solutio n;
- be reliable on unstructured anisotropic meshes that may be severely distorted;
- allow heterogeneous full diffusion tensors;
- result in a sparse system with minimal number of non-zero entries ;
- have higher than the �rst order of accuracy for smooth solutions.

As far as we know, a linear scheme satisfying all the above requirements is not
known. Several linear schemes satisfying one or more requirements have been pro-
posed in [1, 7, 8, 4]. In this article, we analyze a nonlinearscheme that satis�es all six
requirements.
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Monotonicity is the most dif�cult requirement to satisfy. We disting uish two classes
of monotone schemes. The larger class contains schemes which preserve positivity of
a continuum solution. The smaller class contains schemes which satisfy the discrete
maximum principle (DMP). Both classes are tightly connected to alg ebraic properties of
the matrix of the discrete operator. A monotone matrix [18] guarantees that the solution
of a system of linear algebraic equations will be non-negative fo r any non-negative right
hand side. The discrete maximum principle requires the matrix to be monotone and to
have weak diagonal dominance in rows [16].

Classical �nite volume (FV) and �nite element (FE) schemes viol ate the discrete max-
imum principle on general meshes and for full diffusion tensors [ 6, 8]. The schemes
which satisfy the DMP impose severe restrictions on both meshes and problem coef�-
cients [13, 14]. To enlarge the class of admissible problems and meshes, some schemes
such as the multi-point �ux approximation methods [1] use built-in �exi bility to increase
their monotonicity regions. The other schemes use the �rst physica l principles such as
the constrained minimization of the energy functional [11] to get the positive solution.
In this article, we analyze a FV scheme which is monotone (i.e. pr eserves positivity of
a continuum solution) and imposes no constraints on both the problem co ef�cients and
mesh regularity.

Recently a few nonlinear schemes [5, 10] have been suggested to guarantee mono-
tonicity on unstructured simplicial meshes. The Poisson equation in a rbitrary space
dimensions was analyzed in [5] and a general two-dimensional parabolic equation was
considered in [10]. In this article, we further develop and analy ze the nonlinear FV
scheme proposed in [10]. First, we rectify the scheme by giving correct positions of collo-
cation points for the case of a full diffusion tensor and an unstructured tr iangular mesh.
Second, we propose an alternative interpolation technique [15] to i mprove robustness
of the scheme for problems with strong anisotropy and sharp gradi ents. Third, we prove
monotonicity (in the sense of solution positivity) of the scheme for s tationary diffusion
equations. It was shown in [10] that the scheme is monotone only for parabolic equa-
tions and suf�ciently small time steps. Fourth, we study numerically im portant features
of the scheme such as violation of the DMP as well as impact of anisotropy of the diffu-
sion tensor on the scheme convergence. Finally, we extend the scheme to shape-regular
quadrilateral meshes and heterogeneous isotropic diffusion tenso rs. We also mention
the recent extension of the scheme to tetrahedral meshes [19].

The outline of the article is as follows. In Section 2 we formulate the s tationary dif-
fusion equation and introduce the conformal simplicial mesh. In Se ction 3 we describe
and analyze the nonlinear FV scheme. In Section 4 we extend the scheme to polygonal
meshes. In section 5 we present the numerical experiments which illustrate the basic
features of the scheme.

2 Stationary diffusion equation

Let 
 be a two-dimensional polygonal domain 
 with boundary � = � N [ � D where
� D = �� D and � D 6= ; . We consider a model diffusion problem for unknown concentra-
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tion c:
� div Dr c = f in 


c = gD on � D

� D
@c
@n

= gN on � N

(1)

where D = DT > 0 is a piecewise constant (possibly anisotropic) diffusion tenso r and n
is the exterior normal vector.

Let T be a conformal triangulation composed of NT triangular cells T. We assume
that the tensor D is constant inside each cell and its jumps occur only along mesh edges
of T . Let q = � Dr c denote the diffusion �ux which satis�es the mass balance equation:

div q = f in 
 : (2)

3 Monotone nonlinear FV scheme on triangular meshes

In this section, we derive a nonlinear FV scheme with 2-point �ux a pproximation. In-
tegrating the mass balance equation (2) over a cellT and using the Green formula we
get: Z

@T
q � n ds =

Z

T
f dx; 8T 2 T ; (3)

where n denotes the outer unit normal to @T. Let e denote an edge of triangle T and
ne be the corresponding normal vector. For a single cell T, we shall always assume that
ne is the outward normal vector. We shall specify orientation of ne in all other cases.
Hereafter, it will be convenient to assume that jnej = jej where jej denotes the length of
edge e. The equation (3) becomes

X

e2 @T

qe � ne =
Z

T
f dx; 8T 2 T ; (4)

where qe is the average �ux density for edge e:

qe =
1
jej

Z

e
q ds:

The FV schemes differ by approximations for the �uxes qe. In this article we use a
two-point �ux approximation. For each cell T, we assign one degree of freedomCT for
concentration c. Let C be the vector of discrete unknowns. The two-point �ux approxi-
mation uses only two degrees of freedom CT+ and CT� corresponding to cells T+ and T�

that share the edge e. Sometimes, we shall write C+ instead of CT+ for simplicity. The
general form for the two-point �ux is as follows:

qh
e = A+

e C+ � A �
e C� ;

where A+
e and A �

e are some coef�cients. For instance, A+
e = A �

e in some classical FV
schemes. Substituting discrete approximation qh

e for qe in (4), we obtain a system of NT

equations with NT unknowns CT .
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3.1 Nonlinear two-point �ux

In this section, we consider a nonlinear two-point �ux approxima tion where coef�cients
A+

e and A �
e depend on concentration. We begin with the physical meaning of di screte

unknowns. The discrete concentration CT approximates the continuous concentration
c at a point xT inside triangle T. We shall refer to this point as the collocation point.
Denoting the vertices of this triangle by v1, v2 and v3, we de�ne the collocation point as
follows:

xT =
3X

i =1

v i � i ; � i =
jn � ( i ) jD

P 3
j =1 jn � ( j ) jD

; (5)

where jnjD = ( D n � n)1=2 is the length of vector n in metric D induced by the diffusion
tensor in triangle T and � (i ) denotes the edge opposite to vertexv i . The reason for such
a choice of coordinates� i will be explained later.

Let us consider an interior mesh edge e with end points v1 and v2 shared by two
triangles T+ and T� . Let D+ and D� be the values of diffusion tensor in triangles T+ and
T� , respectively. Similarly, we denote the collocation points for th ese triangles by x+

and x � (see Fig. 1). We assume that the normal vectorne is outward for triangle T+ .
Let Ti , i = 1; 2, be the triangle with vertices x+ , x � , and v i . For triangle T1, we

denote the normal vectors to its edges by n+
1 , n �

1 and nM as shown in Fig. 1. We assume
again that length of these vectors equals to length of the correspondi ng edge, i.e. jn �

1 j =
jv1 � x � j and jnM j = jx+ � x � j. In a similar way we de�ne normals n �

2 to edges of
triangle T2. The following identities hold:

n+
1 + n �

1 + nM = 0 and n+
2 + n �

2 � nM = 0: (6)

Case I. To illustrate the general idea of the method, we consider �rst the ca seD+ =
D� = D. The Green formula for triangle T1 and de�nition of �ux q yield:

Z

T1

D� 1q dx = �
Z

@T1

cn ds: (7)

Applying the mid-point (second-order) quadrature rule for both in tegrals, we obtain

�j T1jD� 1qh
e;1 =

C1 + C+

2
n+

1 +
C1 + C�

2
n �

1 +
C+ + C�

2
nM

where C1; C+ and C� are the values of concentration c at points v1; x+ , and x � , respec-
tively. Only concentrations C� are our discrete unknowns. The concentration C1 will be
eliminated later. Using identity (6), we get

qh
e;1 =

1
2jT1j

D
�
C+ n �

1 + C� n+
1 � C1 (n+

1 + n �
1 )

�
: (8)

Now we apply the same derivations to triangle T2 to obtain the second formula for the
�ux density:

qh
e;2 =

1
2jT2j

D
�
C+ n �

2 + C� n+
2 � C2 (n+

2 + n �
2 )

�
: (9)
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x+

x �

v2

v1

nM

n �
2

ne

n �
1

n+
1

n+
2

Figure 1: Case I. Interior edge e with end points v1 and v2. The collocation points x+

and x � are marked by solid balls. The triangles T+ and T� are marked by dashed lines.

Given two �ux density approximations (8) and (9), we seek for the di screte �ux qh
e �ne

through edge e as their linear combination:

qh
e � ne = � 1 qh

e;1 � ne + � 2 qh
e;2 � ne; (10)

where � 1 and � 2 are positive unknown coef�cients. The approximation of �ux densi ty
yields

� 1 + � 2 = 1: (11)

The second equation for these coef�cients follows from the require ment that qh
e � ne is

the two-point �ux approximation. Substituting (8) and (9) into (10), we require that:

� 1
C1 (n+

1 + n �
1 ) � ne

jT1j
+ � 2

C2 (n+
2 + n �

2 ) � ne

jT2j
= 0: (12)

The solution of system (11)–(12) gives

� 1 =
C2=jT2j

C1=jT1j + C2=jT2j
and � 2 =

C1=jT1j
C1=jT1j + C2=jT2j

: (13)

Substituting (13) in (10) gives the discrete �ux through the interior edge e:

qh
e � ne = A+

e (C) C+ � A �
e (C) C� ; (14)
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where

A+
e (C) =

� 1

2jT1j
n �

1 � D ne +
� 2

2jT2j
n �

2 � D ne

A �
e (C) = �

� 1

2jT1j
n+

1 � D ne �
� 2

2jT2j
n+

2 � D ne: (15)

The coef�cients A+
e and A �

e depend on concentrations C1, C2, i.e. the �ux (14) is
nonlinear. The unknown concentrations C1 and C2 must be approximated using the
original degrees of freedom, i.e. concentrations at collation points. The total number of
collation points is NT which leave enough �exibility for accurate approximation of these
concentrations. We consider two interpolation methods.

First interpolation method uses three collocation points closest to v1 that form a
imaginary non-degenerate triangle ~T containing v1. We denote these points by xTj ,
j = 1; 2; 3. The linear interpolation over this triangle gives a second-ord er approxi-
mation for C1 [10]:

C1 =
3X

j =1

C(xTj )~� j (16)

where ~� j , j = 1; 2; 3, are the barycentric coordinates of point v1 in triangle ~T. Note that
0 6 ~� j 6 1. We found out that this interpolation method is not robust for problem s with
strong anisotropy and/or solutions with sharp gradients (see Sectio n 5).

Second interpolation method uses the inverse distance weighting [1 5] of values C(xT )
for all triangles T 2 T that have v1 as a vertex. LetU(v1) be the collection of these trian-
gles. Then

C1 =
X

T 2U (v 1 )

C(xT ) wT ; wT =
jxT � v1j � 1

P
T 02U (v 1 ) jxT 0 � v1j � 1

: (17)

Note that 0 6 wT 6 1. We shall use this fact later. The same interpolation methods are
used for approximating C2.

Case II. Now we proceed to the general case D+ 6= D� . In this case the interval
[x+ ; x � ] may not intersect the edge e. Therefore we de�ne m as the midpoint of edge e,
see Fig.2. The edgee and point m split the quadrilateral v1x+ x � v2 into four triangles
T �

i , i = 1; 2. For example, triangle T+
1 is de�ned by vertices m, x+ and v1.

In addition to vectors introduced above (see Fig. 1), we de�ne vecto rs n �
M , and ne;i ,

i = 1; 2, that are normal to intervals [m; x � ] and [m; v i ], i = 1; 2, respectively. The
orientation of these normal vectors is shown in Fig. 2. We assume again that their length
equals to the length of corresponding intervals; for example, jn+

M j = jx+ � mj. Since
ne;i = 1

2ne, the following identities hold:

n �
1 + n �

M �
1
2

ne = 0: (18)

Applying the Green formula (7) for triangle T+
1 and using the mid-point (second-

order) quadrature rules for both integrals, we get

� 2jT+
1 j D� 1

+ qh;+
e;1 = ( C1 + C+ ) n+

1 +
1
2

(C1 + Cm ) ne + ( C+ + Cm ) n+
M ; (19)
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v2

n+
1

v1

n �
1

x �

x+

m

n+
M

n �
M

T �
1

T+
1

T �
2

n �
2

T+
2

ne;1

ne;2

Figure 2: Case II. Interior edge e with end points v1 and v2. The collocation points x+

and x � are marked by solid balls. The triangles T �
1 and T �

2 are marked by thick lines.
The triangles of T sharing the edge e are marked with dashed lines.

where Cm is the concentration value at point m. A similar formula holds for triangle T �
1 :

� 2jT �
1 j D� 1

� qh;�
e;1 = ( C1 + C� ) n �

1 �
1
2

(C1 + Cm ) ne + ( C� + Cm ) n �
M : (20)

Taking into account identities (18) and continuity of the normal �ux ac ross edgee,

qh;+
e;1 � ne = qh;�

e;1 � ne � qh
e;1 � ne;

we eliminate Cm from (19) and (20). To simplify formula, we introduce the followi ng
numbers:

k(i )
� = D� n �

i � ne; i = 1; 2; and d� =
1
2

D� ne � ne:

Then,

qh
e;1 � ne =

C+ (d+ k(1)
� ) + C� (d� k(1)

+ ) � C1(d+ k(1)
� + d� k(1)

+ )

2(jT+
1 j k(1)

� � j T �
1 j k(1)

+ )
: (21)

Repeating the above derivations for triangles T �
2 and T+

2 , we obtain a similar for-
mula:

qh
e;2 � ne =

C+ (d+ k(2)
� ) + C� (d� k(2)

+ ) � C2(d+ k(2)
� + d� k(2)

+ )

2(jT+
2 j k(2)

� � j T �
2 j k(1)

+ )
: (22)

Now we proceed as in Case I. Given two �ux densities, we seek for the ir linear com-
bination:

qh
e � ne = � 1 qh

e;1 � ne + � 2 qh
e;2 � ne; (23)
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where � 1 and � 2 are positive unknowns. The approximation of �ux density yields

� 1 + � 2 = 1: (24)

The second equation for these coef�cients follows from requireme nt of two-point �ux
approximation. Substituting (21) and (22) into (23), we require that:

� 1 1 + � 2 2 = 0;  i =
Ci (d+ k(i )

� + d� k(i )
+ )

2(jT+
i j k(i )

� � j T �
i j k(i )

+ )
: (25)

The solution of system (24)-(25) gives

� 1 =
 2

 2 �  1
and � 2 =

�  1

 2 �  1
: (26)

Therefore, the nonlinear �ux through an interior edge e is

qh
e � ne = A+

e (C) C+ � A �
e (C) C� ; (27)

where

A+
e (C) = � 1

d+ k(1)
�

2(jT+
1 j k(1)

� � j T �
1 j k(1)

+ )
+ � 2

d+ k(2)
�

2(jT+
2 j k(2)

� � j T �
2 j k(2)

+ )
;

A �
e (C) = � � 1

d� k(1)
+

2(jT+
1 j k(1)

� � j T �
1 j k(1)

+ )
� � 2

d� k(2)
+

2(jT+
2 j k(2)

� � j T �
2 j k(2)

+ )
: (28)

Boundary edge . We consider separately the case of Dirichlet and Neumann bound-
ary edge e. If e 2 � N , we simply set

qh
e � ne = �gN jnej; (29)

where �gN is the mean value of gN on edge e. If e 2 � D , there exists a triangle Te 2 T
such that Te \ � D = e. To avoid additional notations, we assume that Te is the triangle
T+ in Fig. 1. The Green formula (7) for triangle T+ , mid-point quadrature rules for both
integrals, and the identity (6) yield:

�j T+ j D� 1
T+

qh
e =

C1 + C+

2
n+

1 +
C2 + C+

2
n+

2 �
C1 + C2

2
(n+

1 + n+
2 ): (30)

SinceC1 and C2 are end points of the Dirichlet edge, Ci = gD (v i ). From (30) we derive
the linear approximation of �ux through edge e:

qh
e � ne =

1
2jT+ j

(gD (v1) n+
2 + gD (v2)n+

1 ) � DT+ ne �
1

2jT+ j
C+ (n+

1 + n+
2 ) � DT+ ne

or in a compact form:
qh

e � ne = A+
e C+ + A �

e ; (31)

where

A+
e = �

1
2jT+ j

(n+
1 + n+

2 ) � DT+ ne; A �
e =

1
2jT+ j

(gD (v1)n+
2 + gD (v2)n+

1 ) � DT+ ne: (32)

In Section 3.3, we show that the coef�cients A �
e appeared in (14), (27), and (31) are

positive.
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3.2 Discrete system and its iterative solution

Let EI and EB denote the sets of interior and boundary edges of T , respectively. We split
the set EB into subsets ED

B and EN
B of Dirichlet and Neumann edges, respectively. The

normal vector ne to edge e is de�ned according to the following rules. If e 2 EB , we
choose the outward normal vector to 
 . If e 2 EI , we denote by Te+ and Te� the two
triangles that share edge e and assume that ne is outward for Te+ . Equation (4) may be
rewritten as X

e2 @T

� (T; e) qh
e � ne =

Z

T
f dx; 8T 2 T ; (33)

where � (T; e) = 1 for e 2 EB and

� (T; e) =
�

1; if T = Te+

� 1; if T = Te�

otherwise.
Substituting (14), (27), and (31) into (33), we get a system ofNT equations in NT

unknowns CT . Let C be the vector discrete unknowns and A(C) be the matrix of this
system. The matrix A(C) may be represented by assembling of 2 � 2 matrices

Ae(C) =
�

A+
e (C) � A �

e (C)
� A+

e (C) A �
e (C)

�

for interior edges and 1 � 1 matrices Ae(C) = A+
e for Dirichlet edges. The coef�cients

A �
e (C) are de�ned in (15), (28), and (32). The global discrete nonlin ear system reads as:

A(C)C = F (34)

where
A(C) =

X

e2T

Ne Ae(C) NT
e ; (35)

FT =
Z

T
f dx �

X

e2E D
B \ @T

A �
e �

X

e2E N
B \ @T

Z

e
gN ds; (36)

A �
e is de�ned in (32) and Ne are assembling matrices consisting of zeros and ones.

The nonlinear system (34) may be solved by a number of different methods. We use
the Picard iterations: Choose a small value "non > 0 and initial vector C0 2 < NT with
positive entries, C0

i > 0, i = 1; : : : ; NT , and repeat for k = 1; 2; : : : ,

1. solveA(Ck� 1)Ck = F ,

2. stop if kA(Ck)Ck � F k 6 "non kA(C0)C0 � F k.

The linear system with non-symmetric matrix A(Ck� 1) is solved by the Bi-Conjugate
Gradient Stabilized (BCGStab) method [17] with the second order I LU preconditioner
[9]. The BCGStab iterations are terminated when the relative norm of the initial residual
becomes smaller than" lin .

According to numerical evidence, the Picard iterations always co nverge provided
that the linear systems are solved with very low tolerance " lin .
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v2

v1

ne
n13

n+
1

xT+

v3

n+
2

n23

Figure 3: Notations for triangle T+ . The collocation point xT+ is marked by a solid bullet.

3.3 Monotonicity

The main result of this section is the following theorem.

Theorem 3.1 Let FTi > 0, C0
Ti

> 0 for i = 1; : : : ; NT and linear systems in Picard iterations
are solved exactly. Then all iteratesCk are non-negative vectors:

Ck
Ti

> 0; i = 1; : : : ; NT :

Proof. Assume for a moment that the matrix A(Ck� 1) is monotone for any non-negative
vector Ck� 1. Then the solution Ck of A(Ck� 1)Ck = F is a non-negative vector and the
next matrix A(Ck) is again monotone. Therefore, Ck

Ti
> 0 for all i and k.

It remains to prove that matrix A(C) is monotone for any vector C with non-negative
components. We begin by showing that for any conformal triangula tion T and any
piecewise constant diffusion tensor D, the following inequalities hold:

A �
e (C) > 0; 8e 2 EI ;

A+
e > 0; 8e 2 ED

B :
(37)

Let us show that
k(1)

+ = D+ n+
1 � ne < 0: (38)

To this end we consider a triangle T+ 2 T with vertices v i , i = 1; 2; 3 (see Fig. 3). We
use the same notations as on Fig. 1 and Fig. 2. We denote the normals to the triangle
edges by n13, n23 and ne. As before, the length of these normals equal to the length of
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corresponding edges. For example, jn13j = jv1 � v3j. Let � D(n; m) denote the angle in
metricD between vectors n and m.

Without loss of generality, we put the origin of the coordinate system in vertex v1.
Equation (5) gives the following formula for the collocation point xT+ :

xT+ =
v2 jn13jD+ + v3 jnejD+

jnejD+ + jn13jD+ + jn23jD+

:

Note that n+
1 is orthogonal to xT+ ; ne and n13 are orthogonal to vectors v2 and v3, respec-

tively. We search n+
1 as a linear combination of vectors ne and n13. The direct substitution

veri�es that

n+
1 = �

ne jn13jD+ � n13 jnejD+

jnejD+ + jn13jD+ + jn23jD+

;

and

D+ ne � n+
1

jnejD +

+
D+ n13 � n+

1

jn13jD +

= 0: (39)

Identity (39) implies that angles between ne and n+
1 and between n13 and � n+

1 are
equal in metric D+ . We shall refer to the line which passes through a triangle vertex
and cuts angles with the above properties as the angleD+ -bisectors. From the mutual
orientation of vectors shown on Fig. 4, we conclude that

� D+ (ne; n+
1 ) = � D+ (n+

1 ; n13) + � D+ (n13; ne)

and
� D+ (� n+

1 ; n13) = � � � D+ (n+
1 ; n13):

Since� D+ (ne; n+
1 ) = � D+ (� n+

1 ; n13), we get that

� D+ (ne; n+
1 ) =

�
2

+
1
2

� D+ (n13; ne)

which in turn implies that the angle between ne and n+
1 is obtuse in metric D+ . Therefore

k(1)
+ < 0. Using similar arguments we show that

k(2)
+ � D+ n+

2 � ne < 0 and k(i )
� � D� n �

i � ne > 0; i = 1; 2: (40)

The positive-de�niteness of the diffusion tensor implies that the c oef�cients d� are pos-
itive.

Now, we show that for non-negative CTi , i = 1; : : : ; NT , the coef�cients � 1 and � 2 in
(13) and (26) are non-negative. For� 's in formula (13) this follows from non-negativity of
C1; C2 and positivity-preserving interpolation methods (16) and (17). For � 's in formula
(26) we need to show that  1 and  2 have opposite signs. Since the denominators in
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n+
1

n13

� n+
1

ne

Figure 4: Normals emanating from a common point. The marked angl es are equal in
metric D+ .

de�nition of  's are positive, we have to analyze sings of the nominators. Introd ucing a
2 � 2 matrix U = 1

2D� (nenT
e )D+ and using identity n+

1 + n �
1 + n+

2 + n �
2 = 0, we get

d+ k(1)
� + d� k(1)

+ = 1
2nT

e D+ nenT
e D� n �

1 + 1
2nT

e D� nenT
e D+ n+

1

= n �
1 � U ne + n+

1 � UT ne

= � n �
2 � U ne � n+

2 � U ne + n+
1 � (UT � U) ne

= � (n �
2 � U ne + n+

2 � UT ne) + n+
2 � UT ne � n+

2 � U ne + n+
1 � (UT � U) ne

= � (d+ k(2)
� + d� k(2)

+ ) + n+
1 � (UT � U) ne + n+

2 � (UT � U) ne:
(41)

Based on identity n+
1 + n+

2 + ne = 0 and skew-symmetry of matrix UT � U we conclude
that sum of the last two terms in (41) is zero. Thus  's in (26) have opposite sings and
therefore � 's are non-negative.

Using (38), (40), and non-negativity of � 1 and � 2, we get that the �rst inequality in
(37) holds for any non-negative vector C 2 < NT . Similarly, from (32), (38), and (40)
we get the second inequality in (37). Summarizing, we have proved three important
statements.

1. All diagonal entries of matrix A(C) are positive.

2. All off-diagonal entries of A(C) are non-positive,

3. Each column sum in A(C) is non-negative and there exists a column with a positive
sum (ED

B 6= ; ).

Therefore, matrix AT (C) is the M -matrix and all entries of (AT (C)) � 1 are non-negative.
Since inverse and transpose operation commute, (AT (C)) � 1 = ( A � 1(C))T , we conclude
that all entries of A � 1(C) are non-negative and A(C) is the monotone matrix. �

Corollary 3.1 For any tensorD the angleD-bisectors of triangleT are concurrent and intersect
at the collocation pointxT de�ned by (5).

Corollary 3.2 Let gN 6 0 on � N , f > 0 in 
 , gD > 0 on � D . ThenA �
e 6 0 in (36) and

thereforeFTi > 0, i = 1; NT .

12



Remark 3.1 The original version of the method [10] gives the wrong position of the collocation
point xT in the case of a full diffusion tensor. For the triangle with vertices(1; 0), (0; 1), and
(0:25; 0:25) and for the diagonal tensorD = diagf 16; 1g the method in [10] results in a non-
monotone scheme.

4 Monotone nonlinear FV scheme on polygonal meshes

Construction of a nonlinear FV scheme on a polygonal mesh is simi lar to that on a tri-
angular mesh. The main dif�culty is to determine a position of collo cation point inside
each mesh cell such that the resulting system is monotone. For the triangular case it is
proved that such points exist for any diffusion tensor and any geom etry. For general
polygonal meshes such points exist only for a restricted class of meshes and diffusion
tensors. We modify the scheme to relax some of the restrictions.

Let D be an isotropic heterogeneous diffusion tensor and Q be a conformal polygonal
mesh composed of NQ cells. We assume that the mesh is composed ofshape-regular and
star-shapedcells in the following sense.

1. For each polygonal cell Q 2 Q , we have

d(Q)
� (Q)

6 R� ;

where d(Q) is the diameter of Q, � (Q) is radius of maximal inscribed circle, and R�

is a constant independent of the mesh.

2. Each cellQ is star-shaped with respect to an interior point xQ, i.e. any ray emanat-
ing from this point intersects the boundary @Qat exactly one point. If geometry
allows, we shall always place xQ at the center of mass ofQ.

Let EI and EB denote again the sets of interior and boundary edges of Q, respectively.
We split EB into two subsets of Dirichlet, ED

B , and Neumann, EN
B , edges. To each edge

e we assign a normal vector ne such that jnej = jej. If e 2 EB , we choose the outward
normal to 
 . For e 2 EI we denote by Qe+ and Qe� the two polygons that share edge e
and assume that ne is outward for Qe+ . The equation (4) may be rewritten as

X

e2 @Q

� (Q; e) qh
e � ne =

Z

Q
f dx; 8Q 2 Q ; (42)

where � (Q; e) is de�ned in the same way as the function � (T; e) in Section 3.2.
Given a two-point �ux formula (27) we may follow the path described in the previ-

ous section to get a nonlinear system (34). In order to guarantee positivity of coef�cients
in formula (27), we propose the following method. For an edge e 2 EI with end points
v1 and v2, we de�ne a minimal interval e0 = [ v0

1; v0
2] containing e such that

D� n �
i � ne > 0 and D+ n+

i � ne 6 0; i = 1; 2; (43)
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Figure 5: Interval [v0
1; v0

2] containing the interior mesh edge ewith end points v1 and v2.
The collocation points x+ and x � are marked by solid balls. The quadrilaterals Q+ and
Q� are marked by dashed lines.

where n �
i are outward normals to edges of polygon v0

1 x+ v0
2 x � as shown in Fig. 5. For-

mally extending coef�cients D � to the respective half planes of e0, we may use formula
(27) to calculate the �ux density through e0 and associate this �ux density with the
mesh edge e. The accuracy of such a modi�cation depends on the ratio je0j=jej which
is bounded for shape-regular polygonal meshes and isotropic he terogeneous tensors.
The monotonicity of the matrix A(C) for any non-negative vector C follows from (43)
and arguments used in Section 3.3.

5 Numerical experiments

We consider several numerical tests to demonstrate that the discretization scheme sat-
is�es the practical requirements mentioned in the introduction. The c onvergence rate
is studied for both smooth and non-smooth highly anisotropic solutio ns. The positivity
of a discrete solution is veri�ed on different types of meshes. We show that the dis-
cretization scheme is applicable to unstructured and strongly distorte d meshes and can
accommodate full heterogeneous and anisotropic diffusion tensor.
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5.1 Implementation issues

Since the FV scheme uses the collocation pointsxQ (xT for triangular meshes) to approx-
imate the solution, it is appropriate to use discrete L2-norms to evaluate approximation
errors. For the concentration c, we use the following norm:

" c
2 =

"
NQX

i =1

(c(xQ i ) � CQ i )
2 jQi j

#1=2

:

For the �ux q, we use the following norm:

"q
2 =

"
M QX

i =1

�
(q � qh

ei
) � nei

� 2
jei j

#1=2

;

where MQ is a total number of mesh edges.
Two interpolation methods were described in Section 3.1. The lin ear interpolation

method is used in Sections 5.3.1 and 5.6. The inverse weighting interpolation method is
used in the other sections. The numerical results presented in Section 5.4 demonstrate
that the linear interpolation method is not robust for problems with strong anisotropy
and/or solutions with sharp gradients.

To visualize a solution, we use the MATLAB tool which constructs the Dela unay
triangulation from the set of collocation points and draws a solution on this triangular
mesh.

5.2 Triangular meshes: positivity of solution

In this section we consider several test problems illustrating The orem 3.1. We also to
compare the nonlinear FV method with the mixed �nite element (MFE) method and the
multi-point �ux approximation (MPFA) method. Recall that the MFE me thod always
results in an algebraic problem with a symmetric positive de�nite m atrix. The MPFA
method results in a nonsymmetric matrix whose positivity was not pro ved in general.

5.2.1 Comparison with linear methods

Let us consider problem (1) in the unit square 
 = (0 ; 1)2 and set

D =
�

y2 + "x 2 � (1 � " )xy
� (1 � " )xy "y 2 + x2

�
; " = 5 � 10� 2; (44)

and

f (x; y) =
�

1 if (x; y) 2 [3=8; 5=8]2;
0 otherwise.

We impose the homogeneous Dirichlet boundary conditions on @
 . Let T be the trian-
gular partion of 
 shown on Fig. 6.
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Figure 6: Uniform triangular partion of 
 :

The exact solution is unknown but the maximum principle states that c(x; y) is non-
negative. The numerical solutions obtained with the MFE, MPFA, and n onlinear FV
methods are shown on Fig. 7. Only the FV method preserves positivi ty of the contin-
uum solution. Both linear methods produce negative values in large subd omains. The
largest negative values appear in the vicinity of the source term are a where the solution
has sharp gradients. The MPFA solution has more non-physical oscillations than the
MFE solution. As parameter " decreases, the oscillations grow. This behavior of linear
methods has been also observed by other researchers.

5.2.2 Different type of meshes

Quality of the solution produced with a linear method is improved when the mesh is
aligned with the solution. The numerical results presented in this sec tion demonstrate
that the nonlinear FV method preserves positivity of a continuum soluti on on differ-
ent triangulations and produces solutions of the same quality. We cons ider the diffu-
sion problem described in the previous section and the following triangular partitions:
the regular structured mesh (Fig.8a), the regular unstructured mesh (Fig. 8b), and the
anisotropic mesh (Fig.8c). In all cases the discrete solution is non-negative.

5.3 Triangular meshes: convergence study

The next group of tests addresses the convergence rate of the nonlinear FV scheme on
randomly distorted triangular meshes. To construct such a mesh, we ta ke a uniform
square partition of 
 with a mesh size h, split each cell into four triangles, and distort
randomly the positions of mesh nodes:

x := x + � xh; y := y + � yh;

where � x and � y are random variables with values between � 0:15and 0:15. It is pertinent
to note that showing convergence of a scheme on a sequence of true random meshes is
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MFE method MPFA method nonlinear FV method

Solution pro�le Solution pro�le Solution pro�le
Cmin = � 0:02 Cmin = � 0:08 Cmin = 0:

Subdomain where Subdomain where
solution is negative solution is negative

Figure 7: Comparison of the MFE, MPFA, and nonlinear FV methods.

a more dif�cult task than that on a sequence of uniformly re�ned mesh es.

5.3.1 Smooth solution

We consider problem (1) in the unit square 
 = (0 ; 1)2 with the exact solution

c(x; y) = 2 cos(�x ) sin(2�y ) + 2 : (45)

We setD = I and impose the Dirichlet boundary condition of @
 .
The convergence results are presented in Table 1. The linear regression analysis

shows that error " c
2 approaches the second-order convergence rate. The convergence

rate for the �ux q is greater than the �rst-order. Note that in linear methods, the super-
convergence of the �ux is usually observed on smooth meshes.

5.3.2 Non-smooth anisotropic solution

Let us consider now problem (1) with a non-smooth anisotropic sol ution. The computa-
tional domain is the unit square with a hole, 
 = (0 ; 1)2=[4=9; 5=9]2, so that the boundary
@
 is composed of two disjoint parts � 1 and � 0 as shown on Fig. 9.

We set f = 0, gD = 0 on � 0, gD = 2 on � 1, and take the anisotropic diffusion tensor D,

D =
�

cos� sin�
� sin� cos�

� �
k1 0
0 k2

� �
cos� � sin�
sin� cos�

�
; (46)
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(a) (b) (c)

Solution pro�le Solution pro�le Solution pro�le
Cmin = 0: Cmin = 0: Cmin = 0:

Figure 8: Solution pro�le on different type of meshes.

where k1 = 1; k2 = 100 and � = �= 6.
Since the exact solution is unknown, we replace it with the discrete s olution com-

puted on a very �ne mesh with h = 1=576 (Fig.10). The numerical results shown in
Table 2 indicate the �rst-order convergence rate for concentratio n c.

5.4 Triangular meshes: violation of discrete maximum principle

The nonlinear FV scheme may not satisfy the DMP. In the absence of a source term, the
discrete solution may have a few maxima inside the computational dom ain. We refer
to this feature of the scheme as “overshoots”. Numerical experiments presented below

h " c
2 "q

2

1=18 9:43e � 3 3:25e � 2
1=36 2:33e � 3 8:48e � 3
1=72 6:00e � 4 2:73e � 3
1=144 1:57e � 4 9:17e � 4
rate 1:96 1:7

Table 1: Convergence analysis for the smooth solution on randoml y distorted triangular
meshes.
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G1
G

0

Figure 9: Computational domain 
 and randomly distorted triangular partition.

Figure 10: Solution pro�le for the problem with the diffusion tensor d e�ned by (46).

show that an appearance and values of overshoots depend on the mutual orientation of
the solution and mesh edges. Moreover, the overshoots are sensitive to the interpolation
method implemented in the scheme.

Let us consider the problem from section 5.3.2 discretized on the un iform triangular
partition shown on Fig. 11. The maximal value of the continuum solution is attained on
the boundary and equals to 2.

We have tested tensors (46) for different ratio k1=k2 and orientation � of principal
axes. The solution pro�les are shown on Fig. 12. Maximum values of the discrete so-
lutions are collected in Table 3. The inverse distance weighting i nterpolation method
reduces overshoots and makes the scheme more robust. Moreover, noovershoots are
observed when sharp gradients of the solution are aligned with mes h edges. The same
observations are held for the MFE and MPFA schemes.

Table 4 demonstrates that the discreteL2-norm of the overshoot error

"over =

"
NQX

i =1

(maxf 0; CQ i � 2g)2 jQi j

#1=2
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h " c
2

1=18 8:69e � 2
1=36 4:60e � 2
1=72 2:34e � 2
1=144 1:37e � 2
1=288 6:72e � 3
rate 0:9

Table 2: Convergence analysis for the non-smooth solution on randomly distorted
meshes.

G1
G

0

Figure 11: Uniform triangular partion of 
 :

� = �
6 � = 5�

6

Cmax Interpolation method

linear inverse
k1=k2 distance

weighting
101 1:82 1:82
102 1:90 1:90
103 1:98 1:98

Cmax Interpolation method

linear inverse
k1=k2 distance

weighting
101 1:89 1:89
102 2:39 2:00
103 3:41 2:05

Table 3: Maximum value of the discrete solution for different diffus ion tensors and in-
terpolation techniques.

goes to zero linearly with h.
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k1=k2 = 103; � = �
6 k1=k2 = 103; � = 5�

6
Linear interpolation Linear interpolation

k1=k2 = 103; � = �
6 k1=k2 = 103; � = 5�

6
Inverse distance weighting Inverse distance weighting

Figure 12: Solution pro�les for different diffusion tensors and d ifferent interpolation
techniques.

5.5 Triangular meshes: heterogeneous diffusion tensor

In this section we demonstrate that the nonlinear FV scheme can handle strong jumps
of full diffusion tensor across mesh edges. We consider problem (1) in the unit square

 = (0 ; 1)2 with the source term

f (x) =
� 1

j! j if x 2 !;
0 otherwise,

where ! = [7=18; 11=18]2 ;

and the homogeneous Dirichlet boundary condition gD = 0 on � D = @
 .
The domain 
 is partitioned into four square subdomains 
 i ; i = 1; : : : ; 4, as shown

in Fig. 13a. The diffusion tensor is given by formula (46) with dif ferent parameters k1,
k2, and � in subdomains 
 i . First, we �x the anisotropy ratio by setting k1 = 103 and
k2 = 1 and vary only parameter � (see Fig. 13a). Second, we use the same values of�
and the chess board distribution of k1 and k2 (see Fig. 14a). In both cases we get the
non-negative discrete solution (see Figs. 13b,14b). Both discrete solutions have a good
eye-ball quality.
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h "over

1=18 2:48e � 3
1=36 1:40e � 3
1=72 5:89e � 4
1=144 2:24e � 4

Table 4: Reduction of the overshoot error "over for k1=k2 = 103 and � = 5�= 6.
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k  =1000  k  = 1
21

q = p/6 q = -p/6

q = p/6q = -p/6

(a) (b)

Figure 13: Principle directions of the anisotropic diffusion tens or with �xed eigenvalues
k1 and k2 (left picture) and pro�le of the discrete solution (right picture).

5.6 Quadrilateral meshes: convergence study

The next group of tests addresses the convergence rate of the nonlinear FV scheme on
polygonal meshes in the case of isotropic diffusion tensors. We consider a set of ran-
domly distorted quadrilateral meshes. The quadrilateral mesh is c onstructed from the
uniform square mesh with the mesh size h by random distortion of its nodes:

x := x + �� xh; y := y + �� yh:

Here � x and � y are random variables with values between � 0:5 and 0:5 and � 2 [0; 1] is
the degree of distortion. We consider � 2 [0:5; 0:7]. The larger � is, the more distorted
mesh is produced (see Fig. 15). If � > 0:5, mesh cells may be non-convex. For each
quadrilateral cell Q the collocation point xQ is de�ned to be the mass center.

We consider the Dirichlet boundary value problem (1) in the unit sq uare 
 = (0 ; 1)2

with the isotropic diffusion tensor D = I and the smooth exact solution

c(x; y) = 2 cos(�x ) sin(2�y ) + 2 : (47)

In all experiments the edge extention factor je0j
jej was bounded by 1:5. The numerical

results presented in Table 5 show that the convergence rate of the nonlinear FV scheme
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Figure 14: Principle directions and eigenvalues of the heterogeneous anisotropic diffu-
sion tensor (left picture) and pro�le of the discrete solution (righ t picture).

Figure 15: Two randomly distorted quadrilateral meshes with � = 0:5 (left picture) and
� = 0:7 (right picture).

is not affected by the distortion parameter � . For the considered degrees of distortion
we observe the second-order convergence rate for concentrationc and greater than the
�rst-order convergence rate for �ux q.

5.7 Polygonal meshes: positivity of solution

We return to the problem discussed in section 5.2.1 and discretize it on the polygonal
partition 
 h of 
 = (0 ; 1)2 shown in Fig. 16a. Since the polygonal extention of the non-
linear FV scheme is restricted to the case of isotropic or slightly a nisotropic diffusion
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" c
2 "q

2

h � = 0:5 � = 0:6 � = 0:7 � = 0:5 � = 0:6 � = 0:7
1=16 8:57e � 3 9:06e � 3 9:47e � 3 3:19e � 2 3:48e � 2 4:27e � 2
1=32 2:17e � 3 2:39e � 3 2:53e � 3 9:12e � 3 1:06e � 2 1:26e � 2
1=64 5:57e � 4 5:94e � 4 6:37e � 4 5:12e � 3 3:46e � 3 4:12e � 3
1=128 1:38e � 4 1:51e � 4 1:59e � 4 9:83e � 4 1:18e � 3 1:44e � 3
rate 1:98 1:97 1:96 1:59 1:62 1:63

Table 5: Convergence results for different distortion parameter s.

tensors, we pick a larger parameter " = 0:1 in the formula (44) for the diffusion tensor.
The exact solution c(x; y) is unknown but according to the maximum principle it

is positive in 
 . The discrete solution pro�le shown in Fig. 16b demonstrates that th e
discretization scheme preserves solution positivity.

(a) (b)

Figure 16: The polygonal mesh (left picture) and the solution pro�l e (right picture).

6 Conclusion

In this article, we further developed the nonlinear �nite volume meth od proposed by
C. Le Potier in [10]. First, we recti�ed the method by providing the c orrect formula for
positions of collocation points. Second, we proposed the alterna tive interpolation tech-
nique which improves robustness of the method for problems with stro ng anisotropy
and sharp gradients. Third, we proved monotonicity of the method f or the stationary
diffusion equation. Fourth, we studied numerically important proper ties of the method
such as the convergence rate and violation of the discrete maximum pr inciple. Fifth,
we extended the method to regular star-shaped polygonal meshes and heterogeneous
isotropic diffusion tensors.

The nonlinear FV method is monotoneand conservativefor arbitrary triangular meshes
and arbitrary full tensor diffusion coef�cients. It has the four-point stencil for triangular
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meshes and the�ve-point stencil for quadrilateral meshes. It gives the second-ordercon-
vergence rate for the scalar unknown and the �rst-order convergence rate for the �ux
unknown. The price for these appealing features is the method non-l inearity.
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